4

CHAPTER SUMMARY

Big Idea 🚺

For Your Notebook

Classifying Triangles by Sides and Angles

BIG IDEAS

	Equilateral	Isoso	celes	Scalene
Sides		XX		
	3 congruent side	congruent sides 2 or 3 congruent sides		No congruent sides
5:	Acute	Equiangular	Right	Obtuse
Angles		\triangle		
	3 angles < 90°	3 angles = 60°	1 angle = 90	0° 1 angle > 90°

Big Idea 🙆

Proving That Triangles Are Congruent

SSS	All three sides are congruent.	$\triangle ABC \cong \triangle DEF$	A = C D = F
SAS	Two sides and the included angle are congruent.	$\triangle ABC \cong \triangle DEF$	A = C D = F
HL	The hypotenuse and one of the legs are congruent. (Right triangles only)	$\triangle ABC \cong \triangle DEF$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ASA	Two angles and the included side are congruent.	$\triangle ABC \cong \triangle DEF$	A C D F
AAS	Two angles and a (non-included) side are congruent.	$\triangle ABC \cong \triangle DEF$	A C D F

Big Idea 🔞

Using Coordinate Geometry to Investigate Triangle Relationships

You can use the Distance and Midpoint Formulas to apply postulates and theorems to triangles in the coordinate plane.

4

CHAPTER REVIEW

@HomeTutor

classzone.com

- Multi-Language Glossary
- Vocabulary practice

REVIEW KEY VOCABULARY

For a list of postulates and theorems, see pp. 926-931.

- triangle, p. 217 scalene, isosceles, equilateral, acute, right, obtuse, equiangular
- interior angles, p. 218
- exterior angles, p. 218
- corollary to a theorem, p. 220
- congruent figures, p. 225
- corresponding parts, p. 225
- right triangle, p. 241 legs, hypotenuse
- flow proof, p. 250
- isosceles triangle, p. 264 legs, vertex angle, base, base angles
- transformation, p. 272
- image, p. 272
- congruence transformation, p. 272 translation, reflection, rotation

VOCABULARY EXERCISES

- 1. Copy and complete: A triangle with three congruent angles is called _?_.
- **2. WRITING** *Compare* vertex angles and base angles.
- 3. WRITING Describe the difference between isosceles and scalene triangles.
- **4.** Sketch an acute scalene triangle. Label its interior angles 1, 2, and 3. Then draw and shade its exterior angles.
- **5.** If $\triangle PQR \cong \triangle LMN$, which angles are corresponding angles? Which sides are corresponding sides?

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of Chapter 4.

4.1 Apply Triangle Sum Properties

рр. 217–224

EXAMPLE

Find the measure of the exterior angle shown.

Use the Exterior Angle Theorem to write and solve an equation to find the value of *x*.

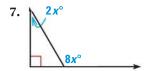
$$(2x - 20)^{\circ} = 60^{\circ} + x^{\circ}$$
 Apply the Exterior Angle Theorem.

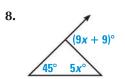
$$x = 80$$
 Solve for x.

The measure of the exterior angle is $(2 \cdot 80 - 20)^{\circ}$, or 140° .

EXERCISES

on p. 219 for Exs. 6–8 Find the measure of the exterior angle shown.





4.2 Apply Congruence and Triangles

pp. 225-231

EXAMPLE

Use the Third Angles Theorem to find $m \angle X$.

In the diagram, $\angle A \cong \angle Z$ and $\angle C \cong \angle Y$. By the Third Angles Theorem, $\angle B \cong \angle X$. Then by the Triangle Sum Theorem, $m\angle B = 180^{\circ} - 65^{\circ} - 51^{\circ} = 64^{\circ}$.

So, $m \angle X = m \angle B = 64^{\circ}$ by the definition of congruent angles.

EXERCISES EXAMPLESIn the diagra

2 and 4 on pp. 226–227

for Exs. 9-14

EXAMPLE 1

for Exs. 15-16

on p. 234

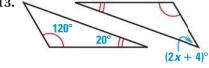
In the diagram, $\triangle ABC \cong \triangle VTU$. Find the indicated measure.

11. $m \angle T$

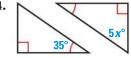
12.
$$m \angle V$$

Find the value of x.

13.



14.



4.3 Prove Triangles Congruent by SSS

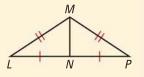
рр. 234–239

EXAMPLE

Prove that $\triangle LMN \cong \triangle PMN$.

The marks on the diagram show that $\overline{LM} \cong \overline{PM}$ and $\overline{LN} \cong \overline{PN}$. By the Reflexive Property, $\overline{MN} \cong \overline{MN}$.

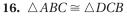
So, by the SSS Congruence Postulate, $\triangle LMN \cong \triangle PMN$.



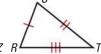
EXERCISES

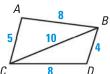
Decide whether the congruence statement is true. Explain your reasoning.

15.
$$\triangle XYZ \cong \triangle RST$$









4

CHAPTER REVIEW

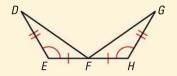
4.4 Prove Triangles Congruent by SAS and HL

рр. 240-246

EXAMPLE

Prove that $\triangle DEF \cong \triangle GHF$.

From the diagram, $\overline{DE} \cong \overline{GH}$, $\angle E \cong \angle H$, and $\overline{EF} \cong \overline{HF}$. By the SAS Congruence Postulate, $\triangle DEF \cong \triangle GHF$.



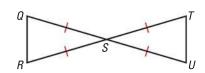
EXAMPLES 1 and 3

on pp. 240, 242 for Exs. 17–18

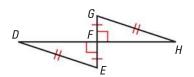
EXERCISES

Decide whether the congruence statement is true. Explain your reasoning.

17.
$$\triangle QRS \cong \triangle TUS$$



18.
$$\triangle DEF \cong \triangle GHF$$



4.5 Prove Triangles Congruent by ASA and AAS

рр. 249–255

EXAMPLE

Prove that $\triangle DAC \cong \triangle BCA$.

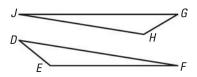
By the Reflexive Property, $\overline{AC} \cong \overline{AC}$. Because $\overline{AD} \parallel \overline{BC}$ and $\overline{AB} \parallel \overline{DC}$, $\angle DAC \cong \angle BCA$ and $\angle DCA \cong \angle BAC$ by the Alternate Interior Angles Theorem. So, by the ASA Congruence Postulate, $\triangle ADC \cong \triangle ABC$.

EXERCISES

State the third congruence that is needed to prove that $\triangle DEF \cong \triangle GHJ$ using the given postulate or theorem.

EXAMPLES 1 and 2 on p. 250 for Exs. 19–20

- 19. **GIVEN** $\triangleright \overline{DE} \cong \overline{GH}$, $\angle D \cong \angle G$, ? \cong ? Use the AAS Congruence Theorem.
- **20. GIVEN** $\triangleright \overline{DF} \cong \overline{GJ}, \angle F \cong \angle J, \underline{?} \cong \underline{?}$ Use the ASA Congruence Postulate.



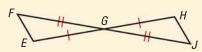
4.6 Use Congruent Triangles

pp. 256-263

EXAMPLE

GIVEN
$$\blacktriangleright \overline{FG} \cong \overline{JG}, \overline{EG} \cong \overline{HG}$$

PROVE
$$\triangleright \overline{EF} \cong \overline{HI}$$



You are given that $\overline{FG} \cong \overline{JG}$ and $\overline{EG} \cong \overline{HG}$. By the Vertical Angles Theorem, $\angle FGE \cong \angle JGH$. So, $\triangle FGE \cong \triangle JGH$ by the SAS Congruence Postulate. Corres. parts of $\cong \triangle$ are \cong , so $\overline{EF} \cong \overline{HJ}$.

EXAMPLE 3

on p. 257 for Exs. 21–23

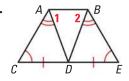
EXAMPLE 3

on p. 266 for Exs. 24–26

EXERCISES

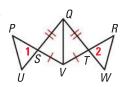
Write a plan for proving that $\angle 1 \cong \angle 2$.

21.



22.

23.



4.7 **Use Isosceles and Equilateral Triangles**

pp. 264-270

EXAMPLE

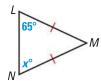
 \triangle *QRS* is isosceles. Name two congruent angles.

 $\overline{QR} \cong \overline{QS}$, so by the Base Angles Theorem, $\angle R \cong \angle S$.

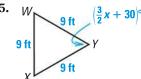
EXERCISES

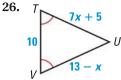
Find the value of x.

24.



25.





4.8 **Perform Congruence Transformations**

pp. 272-279

EXAMPLE

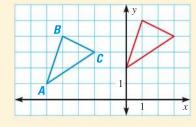
Triangle *ABC* has vertices A(-5, 1), B(-4, 4), and C(-2, 3). Sketch $\triangle ABC$ and its image after the translation $(x, y) \rightarrow (x + 5, y + 1)$.

$$(x, y) \to (x + 5, y + 1)$$

$$A(-5, 1) \rightarrow (0, 2)$$

$$B(-4,4) \to (1,5)$$

$$C(-2,3) \to (3,4)$$



EXAMPLES

2 and 3

on pp. 273-274

for Exs. 27-29

EXERCISES

Triangle QRS has vertices Q(2, -1), R(5, -2), and S(2, -3). Sketch $\triangle QRS$ and its image after the transformation.

27.
$$(x, y) \rightarrow (x - 1, y + 5)$$

28.
$$(x, y) \to (x, -y)$$

29.
$$(x, y) \to (-x, -y)$$